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JPL’s Mission for NASA

Robotic Space Exploration

Earth Science « Mars ¢ Solar System < Astrophysics < Exoplanets < Interplanetary network

Our mission has introduced unique challenges for protecting
space system assets and information



JPL: From Caltech students testing rockets to
the planets and universe in our lifetimes

ey s

Spitzer Space Telescope Earth Science
Mars Exploration Rovers (2004 - present) (1978-now)
(2004 - present)

4med PL 1S @ NASA FFRDC and a Division gf Caltech



A History of Firsts...

Surveyor 1, First soft landing on the moon  Viking, first landing on another planet




Deep space exploration enabled by
NASA’s Deep Space Network (DSN)

Goldstone












Tackling Big Data

« JPL is involved in the research and
development of technologies,
methodologies in science, mission
operations, engineering, and other non-
NASA applications.

— Includes onboard computing to scalable
archives to analytics

« JPL and Caltech formed a joint initiative
in Data Science and Technology to
support fundamental research all the way
to operational systems.

— Methodology transfer across applications
IS a major goal.




Data Science Projects at JPL
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Exponential
Growth of
Data
Volumes

on Moore’s law time scales Understanding of
complex phenomena
-rom data poverty to data glut  requirescomplex data!

From data sets to data streams

-rom static to dynamic, evolving data

From anytime to real-time analysis and discovery
-rom centralized to distributed resources

-rom ownership of data to ownership of expertise

Djorgovski




Transformation and Synergy:
Big Data to Data Science

« All science in the 215t century is becoming cyber-science (aka

e-Science) - and with this change comes the need for a new
scientific methodology

* The challenges we are tackling:
— Management of large, complex, distributed data sets

— Effective exploration of such data O new knowledge
— Thesechallenges are universal

* A great synergy of the
computationally enabled
science, and the science-driven
informatics

Djorgovski



Hypothesis-driven science Data-driven science

| | . 2

_ Data exploration,
[ Experiment J

Pattern discovery

4 4

[ Data analysis } [ Hypothesis/theory J
[ Understanding } [ Data analysis }
The two approaches are ‘

complementary [ Understanding }

Djorgovski



A Modern Scientific Discovery Process

Data Gathering (instruments, sensor networks,

: their pipelines...
L Data Farming: PP )
Storage/Archiving } Databases

Indexing, Searchability Data grids
Data Fusion, Interoperability Data commons
L, Data Mining

Pattern or correlation search
Clustering analysis, classification
Outlier / anomaly searches
Hyperdimensional visualization

L»Data Understanding
+feedback
% L. New Knowledge

Djorgovski




U.S. National Research Council Report:

Frontiers in the Analysis of Massive Data

Chartered by the U.S. National Research
Council, National Academies

Chaired by Michael Jordan, Berkeley, AMP ‘1;3 ,;,n TA : "
Lab (Algorithms, Machines, People) o

. 'a_;-;,;."_f::
NASA/JPL served on the committee ﬁﬁﬂlvsrs A
covering systems architecture for big data & by
management and analysis

Importance of more systematic
approaches for analysis of data

Need for end-to-end data lifecycle: from
point of captureto analysis

Integration of multiplediscipline experts

Application of novel statistical and machine
learning approaches for data discovery




NASA Big Data

Emerging Solutions

* Onboard Data
Analytics

* Onboard Data
Prioritization

*  Flight Computing

_iIfecycle Model

Observational Platfor
and Flight Computing

(1) Too much data, too fast;
cannot transport data
efficiently enough to store

Emerging Solutions

« Intelligent Ground
Stations

* Agile MOS-GDS

(2) Data collection capacity at the
instrument continually outstrips data
transport (downlink) capacity

Ground-based Mission Systems

Massive Data Archives and

[y 0

Big Data Anal

ytics _ _
_ ____ | Emerging Solutions
: - = |+ DataDiscovery from

Archives

* Distributed Data
Analytics

« Advanced Data Science
Methods

* Scalable Computation
and Storage

(3) Data distributed in massive
archives; many different types of
measurements and observations
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Increasing Computing Capability Onboard

Heading Toward Multicore in Space

Voyager computer
- 8,000 instructions/sec and kilobytes of Curiosity (Mars Science Laboratory)
memory Processor: 200 MOPS BAE RAD750

IPhone -
- 14 billion instructions/sec and HPSC (NASA STMD / USAF)

gigabytes of memory Processor: 15 GOPS, extensible |,



Surface Mobility

Mars Rover Navigation
] Athena
Flight Deployed
« 1996 Mars Pathfinder: obstacle avoidance with
structured light

» 2003 Mars Exploration Rover: obstacle
avoidance with stereo vision; pose estimation
and slip detection with visual odometry; goal
tracking

» 2011 Mars Science Laboratory: enhanced
obstacle avoidance, visual odometry and goal
tracking

y R&TD POWER EFFICIENT FAST TRAVERSE

Research and Development el | s

Sy OCTOBER 30, 201
Pa 8% REAL-TIME

— Enhanced hazard detection, traversability
analysis and motion planning for Mars 2020 and
beyond

Raw Navcam Human Terrain classifier

Goal: 15 m straight forward ' _~
fry i




Onboard Analysis

Dust Devils on Mars
Dust devils are scientific phenomena of a transient nature that occur on Mars
— They occur year-round, with seasonally variable frequency
— They are challenging to reliably capture inimages due to their dynamic nature
— Scientists accepted for decades that such phenomena could not be studied in real-time

SpiritSol 543
(July 13,2005)

New onboard Mars rover capability (as of 2006)

« Collect images more frequently, analyze onboard to detect events, and only
downlink images containing events of interest

Benefit
+ < 100% accuracy can dramatically increase science event data returned to Earth
« First notification includes a complete data product

Credit: T. Estlin. B. Bornestein, A. Castano, J. Biesiadecki, L. Neakrase, P. Whelley, R. Greeley, M. Lemmon, R. Castano, S. Chien and MER project team






Data-Driven Capabilities Across
the Ground Environment

Intelligent Ground Stations

Data-Driven Discovery from Archives

Emerging Solutions

* Anomaly Detection

» Combining DSN &
Mission Data

» Attention Focusing

y © Controlling False

' Positives

Emerging Solutions

* Automated Machine
Learning - Feature
Extraction

* Intelligent Search

* Integration of disparate

data

Technologies: Machine Learning, Deep Learning, Intelligent Search,
Data Fusion, Interactive Visualization and Analytics

Agile MOS-GDS

=

!l Emerging Solutions

s/ « Anomaly Interpretation

* Dashboard for Time
Series Data

+ Time-Scalable Decision

Support

Operator Training

Data Analytics and Decision Support

Emerging Solutions

* Interactive Data Analytics
* Cost Analysis of

' Computation

"™ « Uncertainty Quantification
‘8| + Error Detection in Data
Collection




Data-Driven Approaches for Deep Space
Communication: Detecting Anomalies

Current Inputs: DSN operationally relevant data

: : D ——
Real Time Monitor
Data ,
Real Time Operator
Logs . DSN Software Quality
Track Predicts Assessment (SQA)

_ _ _ _ Data Archive
Desired Output: Better Fault Detection and Diagnosis

—
1 - Relational database

- 1O0years of data

- 1.3+ billion records

Real-Time, Historically
Informed Alerts Real-Time Insightinto Data Points’

Criticality and Relationships

.

| Credit: Rishi Verma, JPL




Scaling Processing of NISAR in AWS Cloud
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NASA Archives: Access to Data*

Function /

Planetary Science

Highly distributed/federated
Collaborative
Information-centric
Discipline-specific
Growing/evolving
Heterogeneous
International Standards &
Interoperability

Earth Observation

Multiple Data Centers

Heliophysics

* Petascale environment that is moving to an exascale requirement



Growth of Planetary Data Archived

from U.S. Solar System Research

U.S. Planetafy/"
2500

2000
1500
1000

500




Planetary Data System

« Purpose: To collect, archive and make / 4
accessible digital data and documentation R
produced from NASA's exploration of the solar T — i
system from the 1960s to the present. — N

SRR .."d Dq'gg L

- Infrastructure: Ahighly distributed infrastructure s‘; j i
with planetary science data repositories ===\ pos -,

implemented at major government labs and 2 e N =

academic institutions o . == B

« System driven by a well defined planetary
science information model

« 4000 different types of data
 Over 1.4 PB of data
 International interoperability

* Distributed federation of US nodes and
international archives

 Realized through an international data
science platform! 28 28



Enabling a Metadata Model-Driven Data
System

Information System Architecture

Information Architecture

System@Viodel® Domain@Model{governancedevels)
* Topleveld

* Representation/Format

* Context,®rovenance,ntegrity
* Domain@

* Information@bjectX
* |dentificationf
* Referencingf

* Stateld .
* Sciencel
* Engineeringl
* Explorationt
* Missions/Systems[
» Satellite/Airbornel
* Missionfperationsll
_________ configure’ — System Architecture |~ describedl |
|
Configurable@omponentsk i
¢ DatalManagement@odel? Configured®| <. use]
- ; drivels & l Datal?
Search/Access@Model? System |
* AnalyticssModel®  producet
|
|

Crichton, D. Hughes, J.S.; Hardman, S. ;Law, E. ; Beebe, R. ; Morgan, T.; Grayzeck, E.
7/16/2018 A Scalable Planetary Science Information Architecture for Big Science Data. 29
IEEE 10th International Conference on e-Science, October 2014.



International Planetary Data Alliance:
Collaboration and Access to Data Archives

LADEE MAVEN Osiris-REx ExoMars BepiColombo Mars 2020 Psyche
(NASA) (NASA) (NASA) (ESA/Russia) (ESA/JAXA) (NASA) (NASA)

InSight JUICE Europa Hyabusa-2 Chandrayaan-2 Lucy
(NASA) (ESA) (NASA) (JAXA) (ISRO) NASA

Endorsed by the International Planetary Data Alliance in July 2012 -
https://planetarydata.org/documents/steering-committee/ipda-endorsements-recommendations-and-actions
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Increasing Need for Data-Driven Analysis
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Setup Automated Data Analytic Pipelines
(from archives to analytics)

« Support construction of online data analytic capabilities from
archives

— Ad hoc workflows and data pipelines

— Rapid integration of different methodologies (e.g., feature detection,
classification, etc)

— Establishment of highly scalable databases for analytics
— Derive additional metadata to support analysis

Instrument Publish Data Sets with

» < > Common Data Elements
>
29

& 9
- Data Repository Data Science
Imaging Methods




Visualization and Analytics

Examples: Hydrology and sealevelrise
Interactive visualization ” ' a
of heterogeneous
planetary objects

Integration of multiple Earth observing
remote sensing instruments;
comparison against models

Examples: Planetary
Image search, Mars
and Moon surface
navigation, feature
extraction from
Planetary images.

o
L/ a7

Real-time feature extraction
and classification in astronomy



Exploring the Moon through Data Analytics
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With a diameter of 154 km and a
i central peak 5.5 km tall, Gale Croter
B was chosen 33 the landing site for
the Mars Sclence Laboratory
F | Curiosty rover. The choice was
based on evidence from orditing
spacecraft that indicate that the
crater may have once contained
Gale Oratar with Corioaty large amounts of liquid woter, The
Watig she Croied 1 yelow central peak, Mount Sharp, exhibits
lyered rock deposits rich in
sedimentary minerals iIncluding days, sulfates, and saits that
require water to form,

Credit: Emily Law, Shan Malhotra




Content-Based Image Classification

* About ~1.3M images from MRO Mission HIRISE instrument
» Previously no way to easily find images with certain landmarks (e.g., craters)
* New Approach:
1) Determine high salience (i.e., distinctive) regions by computing statistical
differences between pixel and surrounding context
2) Classify landmarks using machine learning model and user training data

Crater Impact ejecta
N Ay

™ Barchan dune Dark slope streak

@ /A

R il
0. A 4
MOC, June 2000 Salience Map Examples of classified landmarks
POC: K. Wagstaff




Ground-based Data Analysis

Understanding Underground Water in the California
Central Valley

Credit: Tom Farr



Build Analytic Data Infrastructures

Python/lpython  notebooRsstatistical Scala/Zeppelin Hive SQL
programs notebooks

@ python Q
@ArcGIS" TPyl 100 R . \

Customclient Ul

vectorand raster
processingservices
at scale

geomesa & Ceolrellis

REST Web Server

Apache »
/"& Tomcat o ‘,\Z
8CCUMULO @ﬁqga%%%lge Spark

Lightning-Fast Cluster Computing

distributed datast
1SS [ S el

HIDES)
distributed file system

Open source and scalable to cloud; 180 billion data points accessible < 1 second



WaterTrek: Interactive Data Analytics for Hydrology
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Fusing In-situ, Air-borne, Space-borne and model generated
data using visualization and a big data éﬁalytics engine




Virtual and Augmented Reality: Virtual Mars







NASA/JPL Informatics Center:
Crossing Disciplines to Support Scientific Research

= Development of an advanced
Knowledge System to capture, ONAL
share and support reproducible \T TUTF 'pL
analysis for biomarker research

= Genomics, Proteomics, Imaging, etc
data types of data

= NASA-NCI partnership,
leveraging informatics and data
science technologies from
planetary and Earth science

= Reproducible, Big Data Systems for
exploring the universe

=  Software and data science
methodology transfer




Data Science Architectures in Cancer

Research

-

Overall Architecture

Local Laboratories
CBRG funded labs (EDRN, MCL, etc.)

Laboratory
Biorepository
Instrument (LabCAS)
“a

;jj
]
@

Publish Data Sets

_ N
@ Curation of dataB Specimens
from studies, other
science data, etc.
(collaborat‘ors) K 3
]
]
v Data
Public Dlség?tl;tllon External
Knowledge-base Science
(eCAS) Community

\

@‘ﬂ
T=F =
S — Sl
v Eik Analysis Team
Science Data

Scientific Results Q{?

T

Bioinformatics

Instrument #Local algorithmic Bioinformatics
Operations  \_ Processing processing Community Tools )
< > _ | A
|
@ Automated pipelines Big Data = ; -
@ Complex workflows @ Scaleable computation Big Data _
@ Scaleable algorithms 4 O0DT+Tika+Hadoop+Solr

@ Biology infrastructure

@ Computational -omics &Cloud, HPC, etc.

@ Auto feature detection

@ Auto curation

€ On-demand algorithms
@ Data fusion methods
#Machine-learning

JPL @Dartmouth OCaItech/




Common Data Elements
and Information Models

* Provide standard data
semantics to capture Sesafisiie (E:))f;t_a
and share biomarker Metadata ject
data
— EDRNCDEs
— MCL CDEs =T =3 o
« Used as models to drive ol S =
the knowledge system B0 = = . .=

llllllllll

Biomarker Ontology Information Model



Data Pipelines and Cancer Research

“LabCAS”

Instrument

Publish Data Sets with
Common Data Elements

>

Laboratory Data
. Sc:ence Data
RNAS €q Repository Processing Algorithm

Publish Data Sets with
Common Data Elements

Laboratory Data

Imaging Repository

>

Ly
ﬁﬁ Science Data
Processing Algorithm

Integrated Knowledge |
Database

Y
.

Biomarkers

N~

Y
N

Pathology Data Genomics Data

Image Data

Protocols

Instrument

Publish Data Sets with
Common Data Elements

Laboratory Data

Pathology Repository

>
/////

Sc:ence Data
Processing Algorithm

Other Revsources

NCI Imaging
Data

Other
Resources

caBio

Scalable computing, common data elements, computational methods




@) Scalable architecture for ML on AWS

* Uses Docker Swarm, Apache OODT workflows (from
NASA/JPL), RabbitMQ messaging
« (Can scale/auto-scale to any number of EC2 nodes




Methodology Transfer

From Astrophysics...

—T T
- 200 100

200 100

Description: Detecting objects from astronomical measurements by evaluating light
measurements in pixels using intelligent software algorithms.

Image Credit: Catalina Sky Survey (CSS), of the Lunar and Planetary Laboratory, University
of Arizona, and Catalina Realtime Transient Survey (CRTS), Center for Data-Driven Discovery, C4&ch.



Feature classification in Images

Pulmonary Nodule
| Sub-solid Nodule

Solid Nodule

N | |
Part-solid Ground Glass

A

r




Crowd Sourcing Image Analysis

Lung cancer ABOUT CLASSIFY TALK COLLEC

Choose type of nodule

® Semi-solid

® Ground Glass

@® No nodule

@® Skip/Unclear

Need some help with this task?

Show the project tutorial



M) Integrated Knowledge Data Environment

Biomarker Database

@ tarty Detection Research Network

BMDB = = I -

Informatics Center Knowledge Systems  «eca
EDRN Portal

Project Databases(_ PIbaa &~ | ‘= | e —— =

Welcome to KSDB!

A TR Comprehensive Characterization

‘I
/ . Science Data — —
Pl ( . Protocols - =

' | BioMuta

WebSites Biomarkers
Publications

Signatures
Laborato_ry Catalc_)g an I
Archive Service - SOPs
. . Specimens
Etc

s v

LabCAS

Canary
Foundation




Conclusion

Data Science is changing the paradigm for how we can do science
— Science is increasingly data-rich and computationally enabled
— Many new informatics fields are emerging

— Good successes but more work to do!

Much of the focus has been on building infrastructures for capturing data

— Cloud infrastructures and other capabilities have paved the way

However, great opportunity to consider how analytics is integrated end to
end

— From point of collection to analysis

New methods are needed to bring together and drive interactive analytics



These are Extraordinary Times
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